Asymptotic stability in a chemotaxis-competition system with indirect signal production

نویسندگان

چکیده

This paper deals with a fully parabolic inter-species chemotaxis-competition system indirect signal production \begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} &u_{t} = \text{div}(d_{u}\nabla u+\chi u\nabla w)+\mu_{1}u(1-u-a_{1}v), &(x,t)\in \Omega\times (0,\infty), \\ &v_{t} d_{v}\Delta v+\mu_{2}v(1-v-a_{2}u), & w_{t} d_{w}\Delta w-\lambda w+\alpha v, \end{split} \right. \end{eqnarray*} $\end{document} under zero Neumann boundary conditions in smooth bounded domain $ \Omega\subset \mathbb{R}^{N} ($ N\geq 1 $), where d_{u}>0, d_{v}>0 and d_{w}>0 are the diffusion coefficients, \chi\in \mathbb{R} is chemotactic coefficient, \mu_{1}>0 \mu_{2}>0 population growth rates, a_{1}>0, a_{2}>0 denote strength coefficients of competition, \lambda \alpha describe rates degradation production, respectively. Global boundedness solutions to above \chi>0 was established by Tello Wrzosek [J. Math. Anal. Appl. 459 (2018) 1233-1250]. The main purpose further give long-time asymptotic behavior global solutions, which could not be derived previous work.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Asymptotic Stability for a Diffusion Lotka-volterra Competition System with Time Delays

A type of delayed Lotka-Volterra competition reaction-diffusion system is considered. By constructing a new Lyapunov function, we prove that the unique positive steady-state solution is globally asymptotically stable when interspecies competition is weaker than intraspecies competition. Moreover, we show that the stability property does not depend on the diffusion coefficients and time delays.

متن کامل

Asymptotic stability of a repairable system with imperfect switching mechanism

This paper studies the asymptotic stability of a repairable system with repair time of failed system that follows arbitrary distribution. We show that the system operator generates a positive C0-semigroup of contraction in a Banach space, therefore there exists a unique, nonnegative, and time-dependant solution. By analyzing the spectrum of system operator, we deduce that all spectra lie in the...

متن کامل

stability and attraction domains of traffic equilibria in day-to-day dynamical system formulation

در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...

Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion.

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c(*) such that for each wave speed c ≤ c(*), there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2020315